

Forced Eruption for Implant Site Development Utilizing a CAD/CAM Provisional FPD Jie Sun DMD, Sang Lee DMD, MMSc, Jason Lee DDS, MMSc Harvard School of Dental Medicine

2018

Introduction

Bone and soft tissue defects can jeopardize the aesthetic and functional outcomes of implant therapy. Orthodontic extrusion has been described as a predictable, nonsurgical strategy for vertical hard and soft tissue augmentation in case reports, commonly through the use of unaesthetic orthodontic brackets on multiple adjacent teeth. This case report describes a technique using an aesthetic, short-span fixed provisional as an anchor for the forced eruption of an anterior tooth in preparation for the future implant placement.

Case Description

Patient presentation: a 52-year-old female presented with #7 and #8 ceramo-metal restorations with recurrent caries. #7 also interproximal vertical bony defects and buccal gingival recession. Both #7 and Fig. 1: Facial view of #7 and #8 8 had non-surgical root canal therapy in the past.

Treatment plan: After caries control, #7 was determined nonrestorable. #7 single implant and #8 new ceramo-metal restoration were planned for treatment.

Provisional design for #7 forced eruption: Before extraction, #7 was decoronated and orthodontic extrusion was planned to be performed through a short-span, milled PMMA provisional. Intraoral scans were obtained and the provisional was digitally designed and milled.

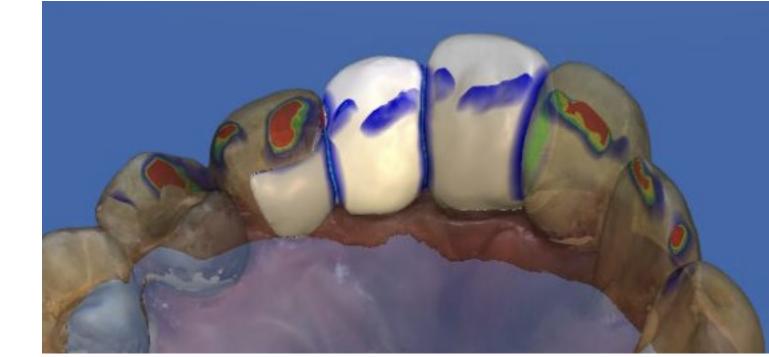


Fig. 2: Facial (left) and palatal (right) views of the provisional design in CEREC software. Intraoral scans were obtained with Omnicam. A provisional that includes splinted #7 and 8 full-coverage crowns with #6 palatal wing was designed; A Telio CAD block was used to mill the provisional.

Forced Eruption — Technique & Results

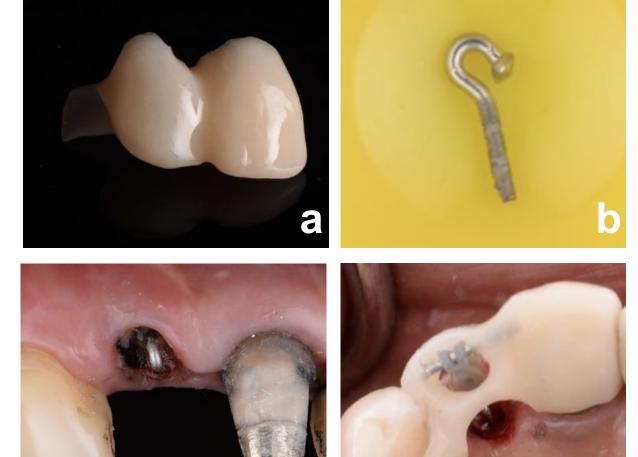


Fig. 3: Provisional setup for forced eruption of #7. a: milled FPD with #6 palatal wing; b: hook adapted from a ball-clasp wire, roughened and sandblasted to increase retention; c: decoronated #7 with hook cemented in place; d: a power chain anchored around a metal post embedded in #7 provisional shell. Duralon carboxylate luting cement (on #8) and RelyX Unicem resin cement (on #6 palatal wing) were used for cementation.

Fig. 4: Provisional modification during forced eruption. a: provisional set-up at time of cementation (week 0); b: at 1-week follow-up, interference was observed between extruded #7 and #7 provisional shell; b': #7 provisional shell was modified to relieve interference to allow further extrusion of #7.

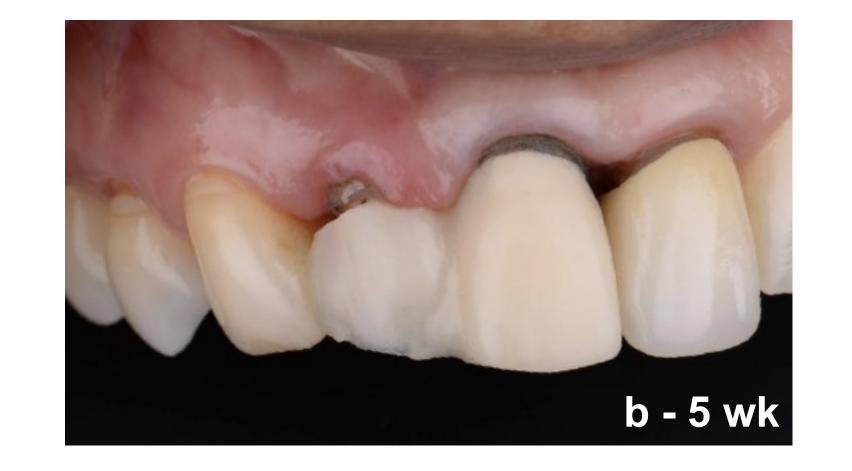


Fig. 5: Forced eruption of #7 over 9 weeks. Coronal movement of gingival margin was observed clinically. #7 provisional shell was cut back bi-weekly to relieve interference with #7 root tip. The power chain was changed bi-weekly and shortened as necessary to recreate tension. At completion of forced eruption (week 9), a new identical provisional was placed for stabilization of #7 (a minimum of 9 weeks) before the surgical phase of implant therapy.

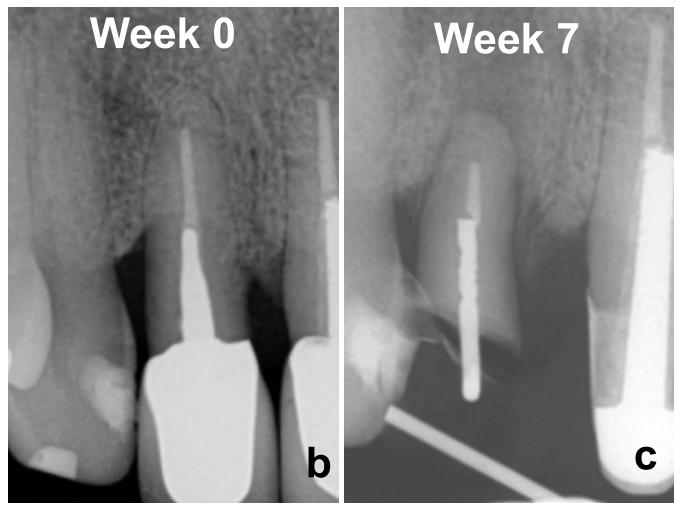


Fig. 6: Pre-op and post-op comparisons of #7 bone and soft tissue level after forced eruption. a: Superimposition of #7 gingival margin before and after forced eruption shows gain of soft tissue coronally as outlined in white. b, c: #7 periapical radiographs at week 0 and week 7, respectively. Premature bone formation was observed interproximally at week 7 of forced eruption.

Conclusions

Orthodontic extrusion may serve as a predictable, efficient, non-surgical alternative to vertical bone and soft tissue augmentation in developing future implant sites in the aesthetic zone. The use of a short-span fixed provisional appears to be an effective and esthetic technique for the forced eruption of a single anterior tooth.

References

- 1. Abdulaziz A, Wael A. Orthodontic extrusion for pre-implant site enhancement: Principles and clinical guidelines. J of Prosth Research 2016; 60:145-55.
- 2. Fakhry A. Enhancing restorative, periodontal, and esthetic outcomes through orthodontic extrusion. *Eur J Esthet Dent* 2007;2:312–20.
- 3. Mantzikos T, Shamus I. Forced eruption and implant site development: an osteophysiologic response. Am J Orthod Dentofac Orthop 1999;115:583–
- 4. Salama H, Salama M. The role of orthodontic extrusive remodeling in the enhancement of soft and hard tissue profiles prior to implant placement: a systematic approach to the management of extraction site defects. Int J Periodontics Restorative Dent 1993;13(4):312-33.